林嶔 (Lin, Chin)
Lesson 10
– 但目前為止它能夠應用的場景仍然太少了,我們開始教大家相關的技術能夠運用到哪些地方
在第8節課的時候,我們曾經學到深度學習至少在3個領域有突破性的進展,分別是物件識別、自然語言、生成模型,在開始接觸他們之前我們先教大家學一個新的東西:自編碼器(Autoencoder)
自編碼器是一種數據的壓縮算法,其中數據的壓縮和解壓縮函數是數據相關的、有損的、從樣本中自動學習的。
– 讓我們再次利用MNIST的手寫數字資料進行實作。請在這裡下載訓練集的資料,並在這裡下載測試集的資料:
library(data.table)
Train.DAT = fread("data/train_data.csv", data.table = FALSE)
Test.DAT = fread("data/test_data.csv", data.table = FALSE)
Train.X = t(Train.DAT[,-1])
dim(Train.X) = c(28, 28, 1, ncol(Train.X))
Train.X = Train.X/255
Train.Y = Train.DAT[,1]
Test.X = t(Test.DAT[,-1])
dim(Test.X) = c(28, 28, 1, ncol(Test.X))
Test.X = Test.X/255
Test.Y = Test.DAT[,1]
– 再複習一次檔案結構:
library(OpenImageR)
imageShow(t(Train.X[,,,1]))
library(mxnet)
my_iterator_func <- setRefClass("Custom_Iter1",
fields = c("iter", "data.csv", "data.shape", "batch.size"),
contains = "Rcpp_MXArrayDataIter",
methods = list(
initialize = function(iter, data.csv, data.shape, batch.size){
csv_iter <- mx.io.CSVIter(data.csv = data.csv, data.shape = data.shape, batch.size = batch.size)
.self$iter <- csv_iter
.self
},
value = function(){
val <- as.array(.self$iter$value()$data)
val.x <- val[-1,]
dim(val.x) <- c(28, 28, 1, ncol(val.x))
val.x <- val.x/255
val.x <- mx.nd.array(val.x)
val.y <- val.x
list(data=val.x, label=val.y)
},
iter.next = function(){
.self$iter$iter.next()
},
reset = function(){
.self$iter$reset()
},
finalize=function(){
}
)
)
my_iter1 = my_iterator_func(iter = NULL, data.csv = 'data/train_data.csv', data.shape = 785, batch.size = 20)
– 我們再看一次這個Iterator怎樣使用:
my_iter1$reset()
my_iter1$iter.next()
## [1] TRUE
my_value = my_iter1$value()
library(OpenImageR)
imageShow(matrix(as.numeric(as.array(my_value$data)[,,,1]), nrow = 28, byrow = TRUE))
– 需要特別注意的是,為了確保我們的Encoder是具有壓縮的感覺,每一層的數值總數都必須小於前一層!
# Encoder
data <- mx.symbol.Variable('data')
fc1 <- mx.symbol.FullyConnected(data = data, num.hidden = 128, name = 'fc1')
relu1 <- mx.symbol.Activation(data = fc1, act_type = "relu", name = 'relu1')
encoder <- mx.symbol.FullyConnected(data = relu1, num.hidden = 32, name = 'encoder')
# Decoder
fc3 <- mx.symbol.FullyConnected(data = encoder, num.hidden = 128, name = 'fc3')
relu3 <- mx.symbol.Activation(data = fc3, act_type = "relu", name = 'relu3')
fc4 <- mx.symbol.FullyConnected(data = relu3, num.hidden = 784, name = 'fc4')
decoder <- mx.symbol.reshape(data = fc4, shape = c(28, 28, 1, -1), name = 'decoder')
# MSE loss
label <- mx.symbol.Variable(name = 'label')
residual <- mx.symbol.broadcast_minus(lhs = label, rhs = decoder)
square_residual <- mx.symbol.square(data = residual)
mean_square_residual <- mx.symbol.mean(data = square_residual, axis = 0:3, keepdims = FALSE)
mse_loss <- mx.symbol.MakeLoss(data = mean_square_residual, name = 'mse')
my_optimizer <- mx.opt.create(name = "adam", learning.rate = 0.001, beta1 = 0.9, beta2 = 0.999, wd = 1e-4)
my.model.FeedForward.create = function (Iterator, ctx = mx.cpu(), save.grad = FALSE,
loss_symbol, pred_symbol,
Optimizer, num_round = 20) {
require(abind)
out_round <- unique(c(1:5, round(quantile(1:num_round, 1:30/30))))
#0. Check data shape
Iterator$reset()
Iterator$iter.next()
my_values <- Iterator$value()
input_shape <- lapply(my_values, dim)
batch_size <- tail(input_shape[[1]], 1)
#1. Build an executor to train model
exec_list = list(symbol = loss_symbol, ctx = ctx, grad.req = "write")
exec_list = append(exec_list, input_shape)
my_executor = do.call(mx.simple.bind, exec_list)
#2. Set the initial parameters
mx.set.seed(0)
new_arg = mxnet:::mx.model.init.params(symbol = loss_symbol,
input.shape = input_shape,
output.shape = NULL,
initializer = mxnet:::mx.init.uniform(0.01),
ctx = ctx)
mx.exec.update.arg.arrays(my_executor, new_arg$arg.params, match.name = TRUE)
mx.exec.update.aux.arrays(my_executor, new_arg$aux.params, match.name = TRUE)
#3. Define the updater
my_updater = mx.opt.get.updater(optimizer = Optimizer, weights = my_executor$ref.arg.arrays)
#4. Forward/Backward
message('Start training:')
set.seed(0)
if (save.grad) {epoch_grad = NULL}
for (i in 1:num_round) {
Iterator$reset()
batch_loss = list()
if (save.grad) {batch_grad = list()}
batch_seq = 0
t0 = Sys.time()
while (Iterator$iter.next()) {
my_values <- Iterator$value()
mx.exec.update.arg.arrays(my_executor, arg.arrays = my_values, match.name = TRUE)
mx.exec.forward(my_executor, is.train = TRUE)
mx.exec.backward(my_executor)
update_args = my_updater(weight = my_executor$ref.arg.arrays, grad = my_executor$ref.grad.arrays)
mx.exec.update.arg.arrays(my_executor, update_args, skip.null = TRUE)
batch_loss[[length(batch_loss) + 1]] = as.array(my_executor$ref.outputs[[1]])
if (save.grad) {
grad_list = sapply(my_executor$ref.grad.arrays, function (x) {if (!is.null(x)) {mean(abs(as.array(x)))}})
grad_list = unlist(grad_list[grepl('weight', names(grad_list), fixed = TRUE) & !grepl('out', names(grad_list), fixed = TRUE)])
batch_grad[[length(batch_grad) + 1]] = grad_list
}
batch_seq = batch_seq + 1
}
if (i %in% out_round) {
message(paste0("epoch = ", i,
": loss = ", formatC(mean(unlist(batch_loss)), format = "f", 4),
" (Speed: ", formatC(batch_seq * batch_size/as.numeric(Sys.time() - t0, units = 'secs'), format = "f", 2), " sample/secs)"))
}
if (save.grad) {epoch_grad = rbind(epoch_grad, apply(abind(batch_grad, along = 2), 1, mean))}
}
if (save.grad) {
epoch_grad[epoch_grad < 1e-8] = 1e-8
COL = rainbow(ncol(epoch_grad))
random_pos = 2^runif(ncol(epoch_grad), -0.5, 0.5)
plot(epoch_grad[,1] * random_pos[1], type = 'l', col = COL[1],
xlab = 'epoch', ylab = 'mean of abs(grad)', log = 'y',
ylim = range(epoch_grad))
for (i in 2:ncol(epoch_grad)) {lines(1:nrow(epoch_grad), epoch_grad[,i] * random_pos[i], col = COL[i])}
legend('topright', paste0('layer', 1:ncol(epoch_grad), '_weight'), col = COL, lwd = 1)
}
#5. Get model
my_model <- mxnet:::mx.model.extract.model(symbol = pred_symbol,
train.execs = list(my_executor))
return(my_model)
}
model <- my.model.FeedForward.create(Iterator = my_iter1, ctx = mx.cpu(), save.grad = FALSE,
loss_symbol = mse_loss, pred_symbol = decoder,
Optimizer = my_optimizer, num_round = 20)
unzip_pred <- predict(model, Test.X)
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0
library(imager)
par(mar=rep(0,4), mfcol = c(4, 5))
for (i in 1:10) {
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
rasterImage(t(Test.X[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
rasterImage(t(unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
}
– 除此之外,你也能嘗試看看隨便給一串32個數字,測試一下解壓縮模型能幫你解碼成什麼東西!
– 想要分離壓縮模型並不困難,需要用到我們之前做轉移特徵學習類似的方式:
all_layers <- model$symbol$get.internals()
encoder_output <- which(all_layers$outputs == 'encoder_output') %>% all_layers$get.output()
encoder_model <- model
encoder_model$symbol <- encoder_output
encoder_model$arg.params <- encoder_model$arg.params[names(encoder_model$arg.params) %in% names(mx.symbol.infer.shape(encoder_output, data = c(28, 28, 1, 7))$arg.shapes)]
encoder_model$aux.params <- encoder_model$aux.params[names(encoder_model$aux.params) %in% names(mx.symbol.infer.shape(encoder_output, data = c(28, 28, 1, 7))$aux.shapes)]
zip_code <- predict(encoder_model, Test.X)
dim(zip_code)
## [1] 32 16800
# Decoder
data <- mx.symbol.Variable('data')
fc3 <- mx.symbol.FullyConnected(data = data, num.hidden = 128, name = 'fc3')
relu3 <- mx.symbol.Activation(data = fc3, act_type = "relu", name = 'relu3')
fc4 <- mx.symbol.FullyConnected(data = relu3, num.hidden = 784, name = 'fc4')
decoder_output <- mx.symbol.reshape(data = fc4, shape = c(28, 28, 1, -1), name = 'decoder')
decoder_model <- model
decoder_model$symbol <- decoder_output
decoder_model$arg.params <- decoder_model$arg.params[names(decoder_model$arg.params) %in% names(mx.symbol.infer.shape(decoder_output, data = c(32, 7))$arg.shapes)]
decoder_model$aux.params <- decoder_model$aux.params[names(decoder_model$aux.params) %in% names(mx.symbol.infer.shape(decoder_output, data = c(32, 7))$aux.shapes)]
unzip_pred <- predict(decoder_model, zip_code, array.layout = 'colmajor')
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0
library(imager)
par(mar=rep(0,4), mfcol = c(4, 5))
for (i in 1:20) {
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
rasterImage(t(unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
}
randon_zip_code <- array(rnorm(320, sd = 3), dim = c(32, 10))
unzip_pred <- predict(decoder_model, randon_zip_code)
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0
library(imager)
par(mar=rep(0,4), mfcol = c(2, 5))
for (i in 1:10) {
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
rasterImage(t(unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
}
test_array <- Test.X
test_array <- test_array + rnorm(prod(dim(test_array)), sd = 0.3)
test_array[test_array > 1] <- 1
test_array[test_array < 0] <- 0
unzip_pred <- predict(model, test_array)
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0
library(imager)
par(mar=rep(0,4), mfcol = c(4, 5))
for (i in 1:10) {
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
rasterImage(t(test_array[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
rasterImage(t(unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
}
– 在今天之前,我們所有使用到的卷積層都只能把特徵圖縮小(下採樣,down sampling),這在對於圖像分類並不會有太大的問題,但對於其他任務來說操作就比較受限了。
這個操作的方式也不會太困難,我們用個簡單的範例把過程實現出來。
假設X是一個3維陣列,而Filter是一個標準2x2反卷積器:
X <- array(1:9, dim = c(3, 3, 1))
Filter <- array(c(-1, 0, 0, 1), dim = c(2, 2, 1, 1))
– 這是當步輻為1的狀況下:
Filter_size <- dim(Filter)[1]
Stride <- 1
out <- array(0, dim = c(4, 4, 1))
for (l in 1:dim(X)[3]) {
for (k in 1:dim(Filter)[3]) {
for (j in 1:dim(X)[2]) {
for (i in 1:dim(X)[1]) {
row_seq <- ((i-1) * Stride + 1):((i-1) * Stride + Filter_size)
col_seq <- ((j-1) * Stride + 1):((j-1) * Stride + Filter_size)
out[row_seq,col_seq,k] <- out[row_seq,col_seq,k] + X[i,j,l] * Filter[,,k,l]
}
}
}
}
out
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] -1 -4 -7 0
## [2,] -2 -4 -4 7
## [3,] -3 -4 -4 8
## [4,] 0 3 6 9
– 這是當步輻為2的狀況下:
Filter_size <- dim(Filter)[1]
Stride <- 2
out <- array(0, dim = c(6, 6, 1))
for (l in 1:dim(X)[3]) {
for (k in 1:dim(Filter)[3]) {
for (j in 1:dim(X)[2]) {
for (i in 1:dim(X)[1]) {
row_seq <- ((i-1) * Stride + 1):((i-1) * Stride + Filter_size)
col_seq <- ((j-1) * Stride + 1):((j-1) * Stride + Filter_size)
out[row_seq,col_seq,k] <- out[row_seq,col_seq,k] + X[i,j,l] * Filter[,,k,l]
}
}
}
}
out
## , , 1
##
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -1 0 -4 0 -7 0
## [2,] 0 1 0 4 0 7
## [3,] -2 0 -5 0 -8 0
## [4,] 0 2 0 5 0 8
## [5,] -3 0 -6 0 -9 0
## [6,] 0 3 0 6 0 9
X <- array(1:18, dim = c(3, 3, 2))
Filter <- array(c(-1, 0, 0, 1, 0, 1, -1, 0), dim = c(2, 2, 1, 2))
– 這是當步輻為1的狀況下:
Filter_size <- dim(Filter)[1]
Stride <- 1
out <- array(0, dim = c(4, 4, 1))
for (l in 1:dim(X)[3]) {
for (k in 1:dim(Filter)[3]) {
for (j in 1:dim(X)[2]) {
for (i in 1:dim(X)[1]) {
row_seq <- ((i-1) * Stride + 1):((i-1) * Stride + Filter_size)
col_seq <- ((j-1) * Stride + 1):((j-1) * Stride + Filter_size)
out[row_seq,col_seq,k] <- out[row_seq,col_seq,k] + X[i,j,l] * Filter[,,k,l]
}
}
}
}
out
## , , 1
##
## [,1] [,2] [,3] [,4]
## [1,] -1 -14 -20 -16
## [2,] 8 -2 -2 -10
## [3,] 8 -2 -2 -10
## [4,] 12 18 24 9
– 這是當步輻為2的狀況下:
Filter_size <- dim(Filter)[1]
Stride <- 2
out <- array(0, dim = c(6, 6, 1))
for (l in 1:dim(X)[3]) {
for (k in 1:dim(Filter)[3]) {
for (j in 1:dim(X)[2]) {
for (i in 1:dim(X)[1]) {
row_seq <- ((i-1) * Stride + 1):((i-1) * Stride + Filter_size)
col_seq <- ((j-1) * Stride + 1):((j-1) * Stride + Filter_size)
out[row_seq,col_seq,k] <- out[row_seq,col_seq,k] + X[i,j,l] * Filter[,,k,l]
}
}
}
}
out
## , , 1
##
## [,1] [,2] [,3] [,4] [,5] [,6]
## [1,] -1 -10 -4 -13 -7 -16
## [2,] 10 1 13 4 16 7
## [3,] -2 -11 -5 -14 -8 -17
## [4,] 11 2 14 5 17 8
## [5,] -3 -12 -6 -15 -9 -18
## [6,] 12 3 15 6 18 9
# Encoder
data <- mx.symbol.Variable('data')
conv1 <- mx.symbol.Convolution(data = data, kernel = c(7, 7), stride = c(7, 7), num_filter = 8, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')
conv2 <- mx.symbol.Convolution(data = relu1, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')
encoder <- mx.symbol.Convolution(data = relu2, kernel = c(2, 2), stride = c(2, 2), num_filter = 32, name = 'encoder')
# Decoder
deconv3 <- mx.symbol.Deconvolution(data = encoder, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'deconv3')
relu3 <- mx.symbol.Activation(data = deconv3, act_type = "relu", name = 'relu3')
deconv4 <- mx.symbol.Deconvolution(data = relu3, kernel = c(2, 2), stride = c(2, 2), num_filter = 8, name = 'deconv4')
relu4 <- mx.symbol.Activation(data = deconv4, act_type = "relu", name = 'relu4')
decoder <- mx.symbol.Deconvolution(data = relu4, kernel = c(7, 7), stride = c(7, 7), num_filter = 1, name = 'decoder')
# MSE loss
label <- mx.symbol.Variable(name = 'label')
residual <- mx.symbol.broadcast_minus(lhs = label, rhs = decoder)
square_residual <- mx.symbol.square(data = residual)
mean_square_residual <- mx.symbol.mean(data = square_residual, axis = 0:3, keepdims = FALSE)
mse_loss <- mx.symbol.MakeLoss(data = mean_square_residual, name = 'mse')
model <- my.model.FeedForward.create(Iterator = my_iter1, ctx = mx.cpu(), save.grad = FALSE,
loss_symbol = mse_loss, pred_symbol = decoder,
Optimizer = my_optimizer, num_round = 20)
unzip_pred <- predict(model, Test.X)
unzip_pred[unzip_pred > 1] <- 1
unzip_pred[unzip_pred < 0] <- 0
library(imager)
par(mar=rep(0,4), mfcol = c(4, 5))
for (i in 1:10) {
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
rasterImage(t(Test.X[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
rasterImage(t(unzip_pred[,,,i]), 0, 0, 1, 1, interpolate=FALSE)
}
– 這是壓縮模型:
all_layers <- model$symbol$get.internals()
encoder_output <- which(all_layers$outputs == 'encoder_output') %>% all_layers$get.output()
encoder_model <- model
encoder_model$symbol <- encoder_output
encoder_model$arg.params <- encoder_model$arg.params[names(encoder_model$arg.params) %in% names(mx.symbol.infer.shape(encoder_output, data = c(28, 28, 1, 7))$arg.shapes)]
encoder_model$aux.params <- encoder_model$aux.params[names(encoder_model$aux.params) %in% names(mx.symbol.infer.shape(encoder_output, data = c(28, 28, 1, 7))$aux.shapes)]
– 這是解壓縮模型:
data <- mx.symbol.Variable('data')
deconv3 <- mx.symbol.Deconvolution(data = data, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'deconv3')
relu3 <- mx.symbol.Activation(data = deconv3, act_type = "relu", name = 'relu3')
deconv4 <- mx.symbol.Deconvolution(data = relu3, kernel = c(2, 2), stride = c(2, 2), num_filter = 8, name = 'deconv4')
relu4 <- mx.symbol.Activation(data = deconv4, act_type = "relu", name = 'relu4')
decoder_output <- mx.symbol.Deconvolution(data = relu4, kernel = c(7, 7), stride = c(7, 7), num_filter = 1, name = 'decoder')
decoder_model <- model
decoder_model$symbol <- decoder_output
decoder_model$arg.params <- decoder_model$arg.params[names(decoder_model$arg.params) %in% names(mx.symbol.infer.shape(decoder_output, data = c(1, 1, 32, 1))$arg.shapes)]
decoder_model$aux.params <- decoder_model$aux.params[names(decoder_model$aux.params) %in% names(mx.symbol.infer.shape(decoder_output, data = c(1, 1, 32, 1))$aux.shapes)]
img_input <- Test.X[,,,1]
dim(img_input) <- c(28, 28, 1, 1)
Input <- predict(encoder_model, img_input)
dim(Input)
## [1] 1 1 32 1
Output <- predict(decoder_model, Input)
dim(Output)
## [1] 28 28 1 1
DECONV_func <- function (X, WEIGHT, STRIDE) {
original_size <- dim(X)[1]
out <- array(0, dim = c(original_size * STRIDE, original_size * STRIDE, dim(WEIGHT)[3], dim(X)[4]))
for (m in 1:dim(X)[4]) {
for (l in 1:dim(X)[3]) {
for (k in 1:dim(WEIGHT)[3]) {
for (j in 1:dim(X)[2]) {
for (i in 1:dim(X)[1]) {
row_seq <- ((i-1) * STRIDE + 1):((i-1) * STRIDE + STRIDE)
col_seq <- ((j-1) * STRIDE + 1):((j-1) * STRIDE + STRIDE)
out[row_seq,col_seq,k,m] <- out[row_seq,col_seq,k,m] + X[i,j,l,m] * WEIGHT[,,k,l]
}
}
}
}
}
return(out)
}
deconv3_out <- DECONV_func(X = Input, WEIGHT = as.array(decoder_model$arg.params$deconv3_weight), STRIDE = 2)
relu3_out <- deconv3_out
relu3_out[relu3_out < 0] <- 0
deconv4_out <- DECONV_func(X = relu3_out, WEIGHT = as.array(decoder_model$arg.params$deconv4_weight), STRIDE = 2)
relu4_out <- deconv4_out
relu4_out[relu4_out < 0] <- 0
My_Output <- DECONV_func(X = relu4_out, WEIGHT = as.array(decoder_model$arg.params$decoder_weight), STRIDE = 7)
library(imager)
par(mar=rep(0,4), mfcol = c(1, 2))
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
Output[Output > 1] <- 1
Output[Output < 0] <- 0
rasterImage(t(Output[,,,1]), 0, 0, 1, 1, interpolate = FALSE)
plot(NA, xlim = c(0.04, 0.96), ylim = c(0.04, 0.96), xaxt = "n", yaxt = "n", bty = "n")
My_Output[My_Output > 1] <- 1
My_Output[My_Output < 0] <- 0
rasterImage(t(My_Output[,,,1]), 0, 0, 1, 1, interpolate = FALSE)
– 另外我們也了解到,透過這種方式訓練的「Encoder」,它確實能把數據做「壓縮/降維」,並且這些「降維」後的數據是有辦法還原成原始圖像的,這也說明了雖然我們看不懂「Encoder」的輸出,但它肯定存在某種意義
– 下圖是我們試圖了解不同數字經過「Encoder」編碼過後的向量在空間中的相對位置,我們發現不同數字存在群聚關係(為了將數據從32維打到2維空間,我們這裡使用了PCA降維技術):
zip_code <- predict(encoder_model, Train.X)
dim(zip_code) <- dim(zip_code)[3:4]
zip_code <- t(zip_code)
PCA_result <- princomp(zip_code, cor = TRUE)
plot(PCA_result$scores[,1], PCA_result$scores[,2],
xlab = 'Comp.1', ylab = 'Comp.2',
pch = 19, cex = 0.5, col = rainbow(10)[Train.Y + 1])
legend('topright', legend = 0:9, pch = 19, col = rainbow(10))
sub_Train.DAT <- Train.DAT[1:500,]
fwrite(x = sub_Train.DAT,
file = 'data/sub_train_data.csv',
col.names = FALSE, row.names = FALSE)
my_iterator_func2 <- setRefClass("Custom_Iter2",
fields = c("iter", "data.csv", "data.shape", "batch.size"),
contains = "Rcpp_MXArrayDataIter",
methods = list(
initialize = function(iter, data.csv, data.shape, batch.size){
csv_iter <- mx.io.CSVIter(data.csv = data.csv, data.shape = data.shape, batch.size = batch.size)
.self$iter <- csv_iter
.self
},
value = function(){
val <- as.array(.self$iter$value()$data)
val.x <- val[-1,]
dim(val.x) <- c(28, 28, 1, ncol(val.x))
val.x <- val.x/255
val.x <- mx.nd.array(val.x)
val.y <- t(model.matrix(~ -1 + factor(val[1,], levels = 0:9)))
val.y <- array(val.y, dim = c(10, dim(val.x)[4]))
val.y <- mx.nd.array(val.y)
list(data=val.x, label=val.y)
},
iter.next = function(){
.self$iter$iter.next()
},
reset = function(){
.self$iter$reset()
},
finalize=function(){
}
)
)
my_iter2 = my_iterator_func2(iter = NULL, data.csv = 'data/sub_train_data.csv', data.shape = 785, batch.size = 20)
data <- mx.symbol.Variable('data')
conv1 <- mx.symbol.Convolution(data = data, kernel = c(7, 7), stride = c(7, 7), num_filter = 8, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')
conv2 <- mx.symbol.Convolution(data = relu1, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')
conv3 <- mx.symbol.Convolution(data = relu2, kernel = c(2, 2), stride = c(2, 2), num_filter = 32, name = 'conv3')
fc1 <- mx.symbol.FullyConnected(data = conv3, num.hidden = 10, name = 'fc1')
softmax <- mx.symbol.softmax(data = fc1, axis = 1, name = 'softmax')
label <- mx.symbol.Variable(name = 'label')
eps <- 1e-8
m_log <- 0 - mx.symbol.mean(mx.symbol.broadcast_mul(mx.symbol.log(softmax + eps), label))
m_logloss <- mx.symbol.MakeLoss(m_log, name = 'm_logloss')
my_optimizer <- mx.opt.create(name = "adam", learning.rate = 0.001, beta1 = 0.9, beta2 = 0.999, wd = 1e-4)
my.eval.metric.loss <- mx.metric.custom(
name = "mlog-loss",
function(real, pred) {
return(pred)
}
)
mx.set.seed(0)
model.1 <- mx.model.FeedForward.create(symbol = m_logloss, X = my_iter2, optimizer = my_optimizer,
eval.metric = my.eval.metric.loss,
array.batch.size = 20, ctx = mx.cpu(), num.round = 100)
model.1$symbol <- softmax
predict_Y <- predict(model.1, Test.X)
confusion_table <- table(max.col(t(predict_Y)), Test.Y)
cat("Testing accuracy rate =", sum(diag(confusion_table))/sum(confusion_table))
## Testing accuracy rate = 0.7761905
print(confusion_table)
## Test.Y
## 0 1 2 3 4 5 6 7 8 9
## 1 1385 0 26 49 11 48 65 16 25 8
## 2 0 1644 35 8 3 1 7 31 23 1
## 3 4 63 1281 127 21 27 84 39 58 6
## 4 24 15 78 1341 6 109 2 83 78 27
## 5 2 0 9 0 1055 6 53 5 6 99
## 6 85 6 26 87 24 1123 20 14 155 34
## 7 76 1 100 16 31 40 1381 0 18 0
## 8 2 10 12 30 21 15 0 1314 5 180
## 9 31 96 57 50 33 139 44 14 1247 18
## 10 54 16 32 34 401 43 5 237 60 1269
mx.set.seed(0)
new_arg <- mxnet:::mx.model.init.params(symbol = m_logloss,
input.shape = list(data = c(28, 28, 1, 7), label = c(10, 7)),
output.shape = NULL,
initializer = mxnet:::mx.init.uniform(0.01),
ctx = mx.cpu())
for (k in 1:6) {
new_arg$arg.params[[k]] <- encoder_model$arg.params[[k]]
}
model.2 <- mx.model.FeedForward.create(symbol = m_logloss, X = my_iter2, optimizer = my_optimizer,
eval.metric = my.eval.metric.loss,
arg.params = new_arg$arg.params,
array.batch.size = 20, ctx = mx.cpu(), num.round = 100)
model.2$symbol <- softmax
predict_Y <- predict(model.2, Test.X)
confusion_table <- table(max.col(t(predict_Y)), Test.Y)
cat("Testing accuracy rate =", sum(diag(confusion_table))/sum(confusion_table))
## Testing accuracy rate = 0.847381
print(confusion_table)
## Test.Y
## 0 1 2 3 4 5 6 7 8 9
## 1 1485 0 14 12 8 38 44 12 16 10
## 2 0 1761 21 4 14 4 7 22 22 15
## 3 6 2 1375 54 11 13 15 33 24 0
## 4 6 18 51 1456 17 91 3 44 63 42
## 5 3 1 25 0 1311 33 35 31 3 119
## 6 45 12 22 92 11 1202 43 3 94 14
## 7 58 5 22 18 17 34 1450 1 2 1
## 8 1 7 51 19 4 13 5 1496 34 72
## 9 45 45 56 54 54 104 37 12 1364 33
## 10 14 0 19 33 159 19 22 99 53 1336
– 但一般的卷積網路通常都比較大,這樣encoder對於數據就不存在壓縮的效果了,把自編碼器的概念擴展到一般的卷積網路會有同樣優勢嗎?
– 這裡我們同樣運用小sample做實驗,我們重新做一個convolutional filter的數量的網路來訓練:
data <- mx.symbol.Variable('data')
# first conv
conv1 <- mx.symbol.Convolution(data = data, kernel = c(5, 5), num_filter = 16, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')
pool1 <- mx.symbol.Pooling(data = relu1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool1')
# second conv
conv2 <- mx.symbol.Convolution(data = pool1, kernel = c(5, 5), num_filter = 32, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')
pool2 <- mx.symbol.Pooling(data = relu2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool2')
# third conv
conv3 <- mx.symbol.Convolution(data = pool2, kernel = c(4, 4), num_filter = 128, name = 'conv3')
relu3 <- mx.symbol.Activation(data = conv3, act_type = "relu", name = 'relu3')
# Softmax
fc1 <- mx.symbol.FullyConnected(data = relu3, num.hidden = 10, name = 'fc1')
softmax <- mx.symbol.softmax(data = fc1, axis = 1, name = 'softmax')
label <- mx.symbol.Variable(name = 'label')
eps <- 1e-8
m_log <- 0 - mx.symbol.mean(mx.symbol.broadcast_mul(mx.symbol.log(softmax + eps), label))
m_logloss <- mx.symbol.MakeLoss(m_log, name = 'm_logloss')
model.3 <- mx.model.FeedForward.create(symbol = m_logloss, X = my_iter2, optimizer = my_optimizer,
eval.metric = my.eval.metric.loss,
array.batch.size = 20, ctx = mx.cpu(), num.round = 100)
model.3$symbol <- softmax
predict_Y <- predict(model.3, Test.X)
confusion_table <- table(max.col(t(predict_Y)), Test.Y)
cat("Testing accuracy rate =", sum(diag(confusion_table))/sum(confusion_table))
## Testing accuracy rate = 0.9005952
print(confusion_table)
## Test.Y
## 0 1 2 3 4 5 6 7 8 9
## 1 1511 0 5 6 3 10 11 6 3 8
## 2 0 1792 11 3 4 10 6 6 9 2
## 3 5 7 1443 50 5 0 1 30 12 1
## 4 0 6 27 1569 0 46 0 30 30 22
## 5 1 2 21 3 1322 13 18 4 0 55
## 6 18 6 2 57 5 1406 25 17 56 11
## 7 77 3 25 3 22 24 1587 0 4 0
## 8 2 9 55 12 2 3 0 1496 29 36
## 9 34 20 46 26 25 32 11 2 1506 9
## 10 15 6 21 13 218 7 2 162 26 1498
# Encoder
data <- mx.symbol.Variable('data')
conv1 <- mx.symbol.Convolution(data = data, kernel = c(5, 5), num_filter = 16, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')
pool1 <- mx.symbol.Pooling(data = relu1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool1')
conv2 <- mx.symbol.Convolution(data = pool1, kernel = c(5, 5), num_filter = 32, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')
pool2 <- mx.symbol.Pooling(data = relu2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool2')
conv3 <- mx.symbol.Convolution(data = pool2, kernel = c(4, 4), num_filter = 128, name = 'conv3')
encoder <- mx.symbol.Activation(data = conv3, act_type = "relu", name = 'encoder')
# Decoder
deconv4 <- mx.symbol.Deconvolution(data = encoder, kernel = c(2, 2), stride = c(2, 2), num_filter = 32, name = 'deconv4')
relu4 <- mx.symbol.Activation(data = deconv4, act_type = "relu", name = 'relu4')
deconv5 <- mx.symbol.Deconvolution(data = relu4, kernel = c(2, 2), stride = c(2, 2), num_filter = 16, name = 'deconv5')
relu5 <- mx.symbol.Activation(data = deconv5, act_type = "relu", name = 'relu5')
decoder <- mx.symbol.Deconvolution(data = relu5, kernel = c(7, 7), stride = c(7, 7), num_filter = 1, name = 'decoder')
# MSE loss
label <- mx.symbol.Variable(name = 'label')
residual <- mx.symbol.broadcast_minus(lhs = label, rhs = decoder)
square_residual <- mx.symbol.square(data = residual)
mean_square_residual <- mx.symbol.mean(data = square_residual, axis = 0:3, keepdims = FALSE)
mse_loss <- mx.symbol.MakeLoss(data = mean_square_residual, name = 'mse')
model <- my.model.FeedForward.create(Iterator = my_iter1, ctx = mx.cpu(), save.grad = FALSE,
loss_symbol = mse_loss, pred_symbol = decoder,
Optimizer = my_optimizer, num_round = 20)
data <- mx.symbol.Variable('data')
# first conv
conv1 <- mx.symbol.Convolution(data = data, kernel = c(5, 5), num_filter = 16, name = 'conv1')
relu1 <- mx.symbol.Activation(data = conv1, act_type = "relu", name = 'relu1')
pool1 <- mx.symbol.Pooling(data = relu1, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool1')
# second conv
conv2 <- mx.symbol.Convolution(data = pool1, kernel = c(5, 5), num_filter = 32, name = 'conv2')
relu2 <- mx.symbol.Activation(data = conv2, act_type = "relu", name = 'relu2')
pool2 <- mx.symbol.Pooling(data = relu2, pool_type = "max", kernel = c(2, 2), stride = c(2, 2), name = 'pool2')
# third conv
conv3 <- mx.symbol.Convolution(data = pool2, kernel = c(4, 4), num_filter = 128, name = 'conv3')
relu3 <- mx.symbol.Activation(data = conv3, act_type = "relu", name = 'relu3')
# Softmax
fc1 <- mx.symbol.FullyConnected(data = relu3, num.hidden = 10, name = 'fc1')
softmax <- mx.symbol.softmax(data = fc1, axis = 1, name = 'softmax')
label <- mx.symbol.Variable(name = 'label')
eps <- 1e-8
m_log <- 0 - mx.symbol.mean(mx.symbol.broadcast_mul(mx.symbol.log(softmax + eps), label))
m_logloss <- mx.symbol.MakeLoss(m_log, name = 'm_logloss')
mx.set.seed(0)
new_arg <- mxnet:::mx.model.init.params(symbol = m_logloss,
input.shape = list(data = c(28, 28, 1, 7), label = c(10, 7)),
output.shape = NULL,
initializer = mxnet:::mx.init.uniform(0.01),
ctx = mx.cpu())
for (k in 1:6) {
new_arg$arg.params[[k]] <- model$arg.params[[k]]
}
model.4 <- mx.model.FeedForward.create(symbol = m_logloss, X = my_iter2, optimizer = my_optimizer,
eval.metric = my.eval.metric.loss,
arg.params = new_arg$arg.params,
array.batch.size = 20, ctx = mx.cpu(), num.round = 100)
model.4$symbol <- softmax
predict_Y <- predict(model.4, Test.X)
confusion_table <- table(max.col(t(predict_Y)), Test.Y)
cat("Testing accuracy rate =", sum(diag(confusion_table))/sum(confusion_table))
## Testing accuracy rate = 0.9269643
print(confusion_table)
## Test.Y
## 0 1 2 3 4 5 6 7 8 9
## 1 1565 0 6 7 1 11 11 1 6 8
## 2 0 1804 8 0 8 0 4 5 8 2
## 3 2 5 1513 23 8 1 10 20 17 1
## 4 8 11 31 1622 0 40 0 26 59 22
## 5 2 3 17 0 1432 11 20 9 3 39
## 6 8 2 4 38 4 1437 25 1 36 8
## 7 48 6 17 8 17 7 1560 0 5 0
## 8 12 4 36 14 2 3 0 1622 18 20
## 9 13 15 20 15 17 27 30 3 1486 10
## 10 5 1 4 15 117 14 1 66 37 1532
透過這種方式訓練自編碼器,理論上網路就可以無限深(不過通常每次壓縮會存在一些損失,從而導致過深的網路無法精確還原)。
Hinton在2006年時就提出這種用法,第一步先分層訓練,第二步把他們合併在一起,最後在微調參數:
– 當然,隨著時代演進,我們手上有眾多的工具用來解決梯度消失問題,而這整個過程非常的費力,所以現在已經幾乎沒有人用這個方式來訓練網路了。但透過自編碼器的輔助進行轉移特徵學習仍然是一個重要的應用方式,這「有機會」能增加最終模型的準確性!
– 自編碼器其實還有非常多種類,像是「去噪自編碼器」(給輸入的圖像增加一些雜訊,而輸出保持原樣)以及「稀疏自編碼器」(限制Encoder的輸出,讓他們幾乎都是0。實現的方式很簡單,只要在損失函數中加上對Encoder的輸出的限制即可)等。實驗時都可以試著去用不同的自編碼器進行轉移特徵學習,以解決權重初始化問題。
– 解除馬賽克同樣也是一種自編碼模型,你現在是否能想像了?
另外,透過自編碼器的學習,我們又學會了一個新的網路結構:反卷積層。我們在下一節課開始會涉及圖像分割以及圖像識別,這會開始大量的使用到反卷積層,請大家務必熟悉它的相關操作技術。
最後,我們留給大家一個問題:你覺得我們目前對自編碼器所定義的Loss function恰當嗎?如果你認為不恰當,有更好的方法嗎?